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Abstract— Software maintenance in software engineering is 
the modification of a software product after delivery to correct 
faults, to improve performance or other attributes. The 
purpose is to preserve the value of software over the time. The 
users report the bugs in the issue tracking system. Bug report 
contains many fields like title, description, version, OS, area 
etc. The quality of bug report affects the repair time. It is 
noticed that users often assign incorrect or don’t assign the 
area of bug which lead to bug reassignment and hence delay. 
Document categorization (based on text) with its diversified 
application has been widely studied by data mining, machine 
learning, and information retrieval communities. In this work 
we analyse the linguistic patterns to classify the bug into most 
three common areas: UI, web-kit and internals. The data set 
will be categorized using different classifiers viz. Naive Bayes, 
Support Vector Machine and Neural Networks etc. 
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I. INTRODUCTION 

A. Motivation 

Quality of bug reports submitted to defect tracking 
systems is a topic that has attracted a lot of research 
attention. Previous studies reveals that the quality of 
information present in a bug report influences its resolution 
time and has impact on the productivity of the development 
team. Better the quality of bug report, lesser will be the 
fixing time. Area identification can help in proper bug 
assignment so as to avoid delay due to reassignment. The 
choice of textual data to grab this valuable information has a 
very intuitive reason at its core. While writing a bug report, 
the reporter, though himself not aware of the actual reason, 
tries to replicate the situation in which the error occurred. 
This replication contains sufficient evidences for a trigger or 
bug-fixer to identify the area of bug. So, this work aims at 
grabbing this intuitive power to automate the area 
assignment 

B. Problem Description 

The textual data (label followed by attributes) of a bug 
report is served as input to different classifiers. These 
classifiers build a model to correctly classify the area of bug 
reports. The performance of the various techniques are 
evaluated and compared. 

II. BACKGROUND 

Text categorization is the task of assigning a Boolean 

value to each pair < dj, ci > ϵ D×C, where D is a domain of 

documents and C = {c1,..., c|C|} is a set of predefined 

categories. A value of T assigned to < dj, ci > ϵ D×C 
indicates a decision to file dj under ci, while a value of F 
indicates a decision not to file dj under ci. More formally, the 

task is to approximate the unknown target function, S': D × 

C → {T, F} by means of a function S: D×C → {T, F} called 
the classifier (aka rule, or hypothesis, or model) such that S' 
and S coincide as much as possible. 

So given a test instance, we wish to predict a class label 
using the training model. The classification problem can be 
seen broadly in the following two versions: hard version and 
soft version. In hard version, a class label is explicitly 
assigned to the problem, whereas in soft version, a 
probability value is assigned to the test version. Other 
variations include assigning rank to different class choices. 

The classification problem assumes categorical class 
labels, though continuous labels (regression modeling 
problem) are also possible. Broadly text classification 
problem can be viewed as a set-valued feature, where the 
presence or absence of a word predicts the class label. 
However, in practice the relevance of a term plays a very 
vital role where the relevance can be described in terms of 
the frequency of occurrence of terms. Thus, a text 
classification can be described by the sparseness of the word 
attributes and high dimensionality. The text classification 
technique can be divided into two heads: discriminative 
classifiers and generative classifiers. Some methods which 
are commonly used for text classification are: 

Decision Tree: It constructs a hierarchical division of the 
underlying data space with the use of different text features 

Pattern (Rule)-based: This classifier constructs a set of 
rules based on word patterns which are most likely related to 
the different classes. 

SVM Classifier: It determines optimal boundaries (linear or 
nonlinear) between different classes [2]. 

Neural Network Classifier: It adapt to the use of word 
features [4]. 

Bayesian (Generative) Classifiers: These classifiers 
attempt to build a probabilistic classifier based on modeling 
the underlying features in different classes [3]. 

Other Classifiers include nearest neighbor problem, and 
genetic algorithm based classifier.  
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Feature selection is an important problem for text 
classification. In this we attempt to determine the features 
that are most relevant to the classification task. The 
measures such as gini index or the entropy are used to 
determine the level to which the presence of a particular 
feature skews the class distribution. 

C. Feature Selection for Text Classification 

The most fundamental task before classification is 
document selection and feature selection. Its importance, 
particularly in text data is due to the high dimensional text 
features and irrelevant features (noise). In general, a text can 
be represented as: bagofwords and textrepresentation as 
string. However, for simplicity, most text classification 
methods use bag-of-words model.  

Most commonly applied techniques for both supervised 
and non-supervised applications are stop-word removal and 
stemming. In stop-word removal, the words which are not 
specific or discriminatory to different classes are eliminated. 
While in Stemming, different forms of the same word are 
consolidated to one. 

III. METHODOLOGY 

A. Naive Bayes Classifier 

Naive Bayes is the simplest and commonly used 
generative classifier. It models the distribution of the 
documents in each class using a probabilistic model with 
independence assumption. These models compute the 
posterior probability with ”bag of words” assumption. Naive 
Bayes Classification is a token based approach to text 
classification. For a given character sequence, it returns the 
joint probability estimates of categories and tokens. 

P (category|text) = P (text|category) * P (category)/P (text) 

Where P (category) is the prior probability of occurrence. 
The naive property about Naive Bayes is that it assumes a 
”bag of word” model. In this model, all terms are considered 
independent of each other. Thus, a text can be visualized as 
a sequence of tokens, where all the tokens are independent 
of each other i.e. 

                           

The above equation can be written as: 

 

The conditional probability P(category|terms) is defined 
in terms of two values: P(tokenjcategory) and P(category). 
We follow a step-by-step algorithmic procedure to construct 
a Naive Bayes Classifier for text classification [1]. The 
process is defined as  

1. Data Extraction 
2. Preprocess 
3. Train 
4. Test/Evaluate 

B. Data Extraction 

The size of the chromium bug report dataset as observed 
on the day of data extraction was approximately 1.8 lakh. 
From this whole, the reports for which area = UI or Internals 
or Webkit were selected for evaluation. The count of these 

reports is 67546. The chromium dataset is labeled, with 
25017 classified as UI bug-reports, 26,808 as Internals and 
the remaining (15724) as webkit bug report. The 
training/testing data is divided in the ratio of 80/20 (i.e., 
13511 for testing and rest for training). This dataset is 
provided to the Classifier for further computations. 

C. Preprocess 

Each file in the train/test set is tokenized by using a 
wrapping TokenizerFactory, which converts character 
sequences into sequences of token. The resultant is feed to 
the Regular Expression filter which extracts only 
alphanumeric sequences, thereby eliminating any special 
character sequence. All the tokens are converted to their 
lowercase equivalent. Finally, all the stop words including 
preposition, conjunction etc. are removed from the set of 
tokens. This task is achieved using the following code. 

 

D. Train 

Traditional Naive Bayes uses maximum a posterior 
(MAP) estimate of the multinomial distribution. Dirichlet 
smoothing is incorporated by adding a fixed prior to each 
count in the training data. Two counts are used to estimate 
the parameters:  

 tokencount(w,c): number of times token w 
occurs in the training set for category c. 

 casecount(c): number of training instances 
for category c. 

The prior probabilities of casecount and tokencount are 
supplied through constructors to the classifier. So,  

 

The probability estimates are obtained using 
normalization as in the code: 
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The model is trained on various values of supervised 
dataset.  

 

E. Evaluate 

The trained model is provided to the test dataset, which 
then evaluates it using various performance measures. 

 

F. Expectation Maximisation in Lingpipe’s Naive Bayes 

EM works by iteratively training better and better 
classifiers using the previous classifier to label unlabelled 
data to use for training. 

 

G. SVM Classifiers 

SVM is a linear classifier for which the output 

is a separating hyper-plane between the 
two classes. The hyper-plane specifies the maximum 
margin of separation. It is closely related to feature 
transformation methods, such as Fisher discriminant. It has 
been observed that text data is ideally suited for SVM 
classification because of the sparse high-dimensional nature 
of text. 

 

Fig 1: What is the best separating hyperplane? 

It is not necessary to use linear function for SVM 
classification. By using the kernel trick, one can construct a 
non-linear decision surface by mapping the data instance 
non-linearly to an inner product space where the classes can 
be separated linearly by a hyper-plane. 

H. Neural Networks 

 

Fig 2: Multi-layer neural network for nonlinear 
separation 

The basic unit in a neural network is a neuron or a node. 
The input to the system is the term frequencies of the ith 
document. A neural network is an interconnection of these 
nodes where the connecting edge carries some weight. Thus 
a typical linear function used in neural network is as 
follows: 

 
To induce complex, non-linear decision boundaries, 

multiple layer neural networks are used. The training 
process is quite complex and error needs to be back-
propagated over different layers. 

 

I. Performance Evaluation 

Classic IR notions for effectiveness are Precision (π) and 
Recall (ρ). Precision for a class ci is defined as a conditional 
probability 

 
i.e. if a random document is classified under ci, then the 

decision is correct. Analogously, recall for a class ci is 
defined as 

  
i.e. if a random document dx ought to be classified under 

ci , this decision is taken. These probabilities can be 
estimated in terms of confusion matrix. A confusion matrix 
is described by four parameters: 
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 False Positive (FPi) 
 True Positive (TPi) 
 False Negative (FNi) 
 True Negative (TNi) 

 
Other Measures can be accuracy, error, F-measure etc. 

The cumulative match curve (CMC) is used as a measure of 
1:m identification system performance. It judges the 
ranking capabilities of an identification system. The 
Receiver Operating Characteristic (ROC) is used as a 
measure of verification system performance. 

IV. CHOICE OF TECHNIQUE 

Broadly the classifiers can be divided into two heads: 
Generative Classifiers and Discriminative Classifiers 

A. Generative Classifier 

Bayesian Classifier: Multinomial Bernoulli Model is 
chosen. 

B. Discriminative Classifier 

SVM: linear/non-linear decision boundary with feature 
transformation 
Neural: multilayer back propagation neural network 
K-Nearest Neighbour: Object classified by majority vote of 
its neighbours. 

V. ANALYSIS OF DATASET 

Data of Google chromium issue tracking system is 
chosen for analysis. It finds its roots in the problem 
statement of automated bug classification. A bug report is a 
semi-structured text, with different attributes cumulatively 
conveying information about a single bug report. Above 1 
lac Bugs were extracted for 4 years. A subset was chosen 
for an approximately 65K bugs belonging to UI, webkit and 
build are extracted for the classifier design. Training and 
Testing data Approximately 50 K used for training and 
remaining 15 K for testing.  

Here we are looking for the textual aspect of bug 
interpretation to find distinguishing features for 
classification. Following is the list of attributes identified in 
a typical bug report extracted from a Chromium data set. 
 IssueIDA: unique identifier for each bug report  
 State: Closed or Open. 
 Status: Fixed, Duplicate, and Verified 
 Reported Time-Stamp: The starting and closing 

time of a bug 
 Reporter: The person who reported the bug 
 owner: The person who is assigned the bug 
 Title: The label of the bug 
 Description: Long description of the bug 
 Area: The intuitive area of bug. It can have values: 

UI, internals, webkit, build, compat, chrome frame 
etc. 

 Type: The nature of bug. It can be Bug, Feature, 
Regression, Usability, Localization, Polish, Other, 
Security, Task, Clean-up, Meta, Test, 
Documentation, Defect, Feature Tracker, Yak 

 Priority: 0,1,2,3 
 Length of Description: Total length of the 

description 
 Operating System: The operating system on which 

bug is observed. 
Since here we are looking for the textual aspect of bug 

interpretation along with some discrete features, so the 
attributes of concern are: 

Title 
Description 
Operating System 

VI. RESULTS 

TABLE 1: NAIVE BAYES RESULTS 

Case 
Accuracy 

(%) 
Recall 
(%) 

Precision 
(%) 

F(1) 
(%) 

Full 
Evaluation 

66 63.85 70.59 66.07 

Internals Vs 
All 

74.9 59.9 72.1 65.4 

Webkit Vs 
All 

85.1 46.9 81.0 59.5 

UI Vs All 72.1 84.6 58.5 69.2 

 

TABLE 2: CONFUSION MATRIX FOR NAIVE BAYES RESULTS 

Reference Vs Response Internals Webkit UI 
Internals 3212 221 1929 
Webkit 597 1478 1070 
UI 643 124 4237 

 

TABLE 3: 10-CROSS FOLD RESULTS FOR NAIVE BAYES 

Average 77.3% 
 

 

TABLE 4: EM IN LINGPIPE’ S NAIVE BAYES 

Average 63% 

 

TABLE 5: SVM RESULTS 

Kernel Function Linear(best) 
Accuracy 79.73% 

 

TABLE 6: CONFUSION MATRIX FOR SVM (LINEAR KERNEL) 

Reference Vs 
Response 

UI Internals Webkit 

UI 2494 2106 0 
Internals 0 5362 0 
Webkit 98 374 2672 

 

TABLE 7: RESULTS FOR SVM (LINEAR KERNEL), ONE VS ALL 

Case Precision (%) False Positive 
Internals Vs All 100 0 
Webkit Vs All 85.0 15 
UI Vs All 54.2 45.8 

 

Trasha Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3478-3482

www.ijcsit.com 3481



TABLE 8: K-NN RESULTS AT K=10(BEST) 
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Accuracy 10-Fold average accuracy 

78.5 73.76 

No. Of Layers 3 
No. Hidden Nodes 10, 20 
No. Of nodes for best 
results 

10 

Accuracy 81.1 
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