
Analysing Pattern for Chromium Bug Area
Classification
Trasha Gupta#, Monika Gupta*

#Department of Computer Science,
Deen Dayal Upadhyaya College,

University Of Delhi, Delhi, India
* Indraprastha Institute of Information Technology

Delhi, India

Abstract— Software maintenance in software engineering is
the modification of a software product after delivery to correct
faults, to improve performance or other attributes. The
purpose is to preserve the value of software over the time. The
users report the bugs in the issue tracking system. Bug report
contains many fields like title, description, version, OS, area
etc. The quality of bug report affects the repair time. It is
noticed that users often assign incorrect or don’t assign the
area of bug which lead to bug reassignment and hence delay.
Document categorization (based on text) with its diversified
application has been widely studied by data mining, machine
learning, and information retrieval communities. In this work
we analyse the linguistic patterns to classify the bug into most
three common areas: UI, web-kit and internals. The data set
will be categorized using different classifiers viz. Naive Bayes,
Support Vector Machine and Neural Networks etc.

Keywords— Text classification, area prediction.

I. INTRODUCTION

A. Motivation

Quality of bug reports submitted to defect tracking
systems is a topic that has attracted a lot of research
attention. Previous studies reveals that the quality of
information present in a bug report influences its resolution
time and has impact on the productivity of the development
team. Better the quality of bug report, lesser will be the
fixing time. Area identification can help in proper bug
assignment so as to avoid delay due to reassignment. The
choice of textual data to grab this valuable information has a
very intuitive reason at its core. While writing a bug report,
the reporter, though himself not aware of the actual reason,
tries to replicate the situation in which the error occurred.
This replication contains sufficient evidences for a trigger or
bug-fixer to identify the area of bug. So, this work aims at
grabbing this intuitive power to automate the area
assignment

B. Problem Description

The textual data (label followed by attributes) of a bug
report is served as input to different classifiers. These
classifiers build a model to correctly classify the area of bug
reports. The performance of the various techniques are
evaluated and compared.

II. BACKGROUND

Text categorization is the task of assigning a Boolean

value to each pair < dj, ci > ϵ D×C, where D is a domain of

documents and C = {c1,..., c|C|} is a set of predefined

categories. A value of T assigned to < dj, ci > ϵ D×C
indicates a decision to file dj under ci, while a value of F
indicates a decision not to file dj under ci. More formally, the

task is to approximate the unknown target function, S': D ×

C → {T, F} by means of a function S: D×C → {T, F} called
the classifier (aka rule, or hypothesis, or model) such that S'
and S coincide as much as possible.

So given a test instance, we wish to predict a class label
using the training model. The classification problem can be
seen broadly in the following two versions: hard version and
soft version. In hard version, a class label is explicitly
assigned to the problem, whereas in soft version, a
probability value is assigned to the test version. Other
variations include assigning rank to different class choices.

The classification problem assumes categorical class
labels, though continuous labels (regression modeling
problem) are also possible. Broadly text classification
problem can be viewed as a set-valued feature, where the
presence or absence of a word predicts the class label.
However, in practice the relevance of a term plays a very
vital role where the relevance can be described in terms of
the frequency of occurrence of terms. Thus, a text
classification can be described by the sparseness of the word
attributes and high dimensionality. The text classification
technique can be divided into two heads: discriminative
classifiers and generative classifiers. Some methods which
are commonly used for text classification are:

Decision Tree: It constructs a hierarchical division of the
underlying data space with the use of different text features

Pattern (Rule)-based: This classifier constructs a set of
rules based on word patterns which are most likely related to
the different classes.

SVM Classifier: It determines optimal boundaries (linear or
nonlinear) between different classes [2].

Neural Network Classifier: It adapt to the use of word
features [4].

Bayesian (Generative) Classifiers: These classifiers
attempt to build a probabilistic classifier based on modeling
the underlying features in different classes [3].

Other Classifiers include nearest neighbor problem, and
genetic algorithm based classifier.

Trasha Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3478-3482

www.ijcsit.com 3478

Feature selection is an important problem for text
classification. In this we attempt to determine the features
that are most relevant to the classification task. The
measures such as gini index or the entropy are used to
determine the level to which the presence of a particular
feature skews the class distribution.

C. Feature Selection for Text Classification

The most fundamental task before classification is
document selection and feature selection. Its importance,
particularly in text data is due to the high dimensional text
features and irrelevant features (noise). In general, a text can
be represented as: bagofwords and textrepresentation as
string. However, for simplicity, most text classification
methods use bag-of-words model.

Most commonly applied techniques for both supervised
and non-supervised applications are stop-word removal and
stemming. In stop-word removal, the words which are not
specific or discriminatory to different classes are eliminated.
While in Stemming, different forms of the same word are
consolidated to one.

III. METHODOLOGY

A. Naive Bayes Classifier

Naive Bayes is the simplest and commonly used
generative classifier. It models the distribution of the
documents in each class using a probabilistic model with
independence assumption. These models compute the
posterior probability with ”bag of words” assumption. Naive
Bayes Classification is a token based approach to text
classification. For a given character sequence, it returns the
joint probability estimates of categories and tokens.

P (category|text) = P (text|category) * P (category)/P (text)

Where P (category) is the prior probability of occurrence.
The naive property about Naive Bayes is that it assumes a
”bag of word” model. In this model, all terms are considered
independent of each other. Thus, a text can be visualized as
a sequence of tokens, where all the tokens are independent
of each other i.e.

The above equation can be written as:

The conditional probability P(category|terms) is defined
in terms of two values: P(tokenjcategory) and P(category).
We follow a step-by-step algorithmic procedure to construct
a Naive Bayes Classifier for text classification [1]. The
process is defined as

1. Data Extraction
2. Preprocess
3. Train
4. Test/Evaluate

B. Data Extraction

The size of the chromium bug report dataset as observed
on the day of data extraction was approximately 1.8 lakh.
From this whole, the reports for which area = UI or Internals
or Webkit were selected for evaluation. The count of these

reports is 67546. The chromium dataset is labeled, with
25017 classified as UI bug-reports, 26,808 as Internals and
the remaining (15724) as webkit bug report. The
training/testing data is divided in the ratio of 80/20 (i.e.,
13511 for testing and rest for training). This dataset is
provided to the Classifier for further computations.

C. Preprocess

Each file in the train/test set is tokenized by using a
wrapping TokenizerFactory, which converts character
sequences into sequences of token. The resultant is feed to
the Regular Expression filter which extracts only
alphanumeric sequences, thereby eliminating any special
character sequence. All the tokens are converted to their
lowercase equivalent. Finally, all the stop words including
preposition, conjunction etc. are removed from the set of
tokens. This task is achieved using the following code.

D. Train

Traditional Naive Bayes uses maximum a posterior
(MAP) estimate of the multinomial distribution. Dirichlet
smoothing is incorporated by adding a fixed prior to each
count in the training data. Two counts are used to estimate
the parameters:

 tokencount(w,c): number of times token w
occurs in the training set for category c.

 casecount(c): number of training instances
for category c.

The prior probabilities of casecount and tokencount are
supplied through constructors to the classifier. So,

The probability estimates are obtained using
normalization as in the code:

Trasha Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3478-3482

www.ijcsit.com 3479

The model is trained on various values of supervised
dataset.

E. Evaluate

The trained model is provided to the test dataset, which
then evaluates it using various performance measures.

F. Expectation Maximisation in Lingpipe’s Naive Bayes

EM works by iteratively training better and better
classifiers using the previous classifier to label unlabelled
data to use for training.

G. SVM Classifiers

SVM is a linear classifier for which the output

is a separating hyper-plane between the
two classes. The hyper-plane specifies the maximum
margin of separation. It is closely related to feature
transformation methods, such as Fisher discriminant. It has
been observed that text data is ideally suited for SVM
classification because of the sparse high-dimensional nature
of text.

Fig 1: What is the best separating hyperplane?

It is not necessary to use linear function for SVM
classification. By using the kernel trick, one can construct a
non-linear decision surface by mapping the data instance
non-linearly to an inner product space where the classes can
be separated linearly by a hyper-plane.

H. Neural Networks

Fig 2: Multi-layer neural network for nonlinear
separation

The basic unit in a neural network is a neuron or a node.
The input to the system is the term frequencies of the ith
document. A neural network is an interconnection of these
nodes where the connecting edge carries some weight. Thus
a typical linear function used in neural network is as
follows:

To induce complex, non-linear decision boundaries,

multiple layer neural networks are used. The training
process is quite complex and error needs to be back-
propagated over different layers.

I. Performance Evaluation

Classic IR notions for effectiveness are Precision (π) and
Recall (ρ). Precision for a class ci is defined as a conditional
probability

i.e. if a random document is classified under ci, then the

decision is correct. Analogously, recall for a class ci is
defined as

i.e. if a random document dx ought to be classified under

ci , this decision is taken. These probabilities can be
estimated in terms of confusion matrix. A confusion matrix
is described by four parameters:

Trasha Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3478-3482

www.ijcsit.com 3480

 False Positive (FPi)
 True Positive (TPi)
 False Negative (FNi)
 True Negative (TNi)

Other Measures can be accuracy, error, F-measure etc.

The cumulative match curve (CMC) is used as a measure of
1:m identification system performance. It judges the
ranking capabilities of an identification system. The
Receiver Operating Characteristic (ROC) is used as a
measure of verification system performance.

IV. CHOICE OF TECHNIQUE

Broadly the classifiers can be divided into two heads:
Generative Classifiers and Discriminative Classifiers

A. Generative Classifier

Bayesian Classifier: Multinomial Bernoulli Model is
chosen.

B. Discriminative Classifier

SVM: linear/non-linear decision boundary with feature
transformation
Neural: multilayer back propagation neural network
K-Nearest Neighbour: Object classified by majority vote of
its neighbours.

V. ANALYSIS OF DATASET

Data of Google chromium issue tracking system is
chosen for analysis. It finds its roots in the problem
statement of automated bug classification. A bug report is a
semi-structured text, with different attributes cumulatively
conveying information about a single bug report. Above 1
lac Bugs were extracted for 4 years. A subset was chosen
for an approximately 65K bugs belonging to UI, webkit and
build are extracted for the classifier design. Training and
Testing data Approximately 50 K used for training and
remaining 15 K for testing.

Here we are looking for the textual aspect of bug
interpretation to find distinguishing features for
classification. Following is the list of attributes identified in
a typical bug report extracted from a Chromium data set.
 IssueIDA: unique identifier for each bug report
 State: Closed or Open.
 Status: Fixed, Duplicate, and Verified
 Reported Time-Stamp: The starting and closing

time of a bug
 Reporter: The person who reported the bug
 owner: The person who is assigned the bug
 Title: The label of the bug
 Description: Long description of the bug
 Area: The intuitive area of bug. It can have values:

UI, internals, webkit, build, compat, chrome frame
etc.

 Type: The nature of bug. It can be Bug, Feature,
Regression, Usability, Localization, Polish, Other,
Security, Task, Clean-up, Meta, Test,
Documentation, Defect, Feature Tracker, Yak

 Priority: 0,1,2,3
 Length of Description: Total length of the

description
 Operating System: The operating system on which

bug is observed.
Since here we are looking for the textual aspect of bug

interpretation along with some discrete features, so the
attributes of concern are:

Title
Description
Operating System

VI. RESULTS

TABLE 1: NAIVE BAYES RESULTS

Case
Accuracy

(%)
Recall
(%)

Precision
(%)

F(1)
(%)

Full
Evaluation

66 63.85 70.59 66.07

Internals Vs
All

74.9 59.9 72.1 65.4

Webkit Vs
All

85.1 46.9 81.0 59.5

UI Vs All 72.1 84.6 58.5 69.2

TABLE 2: CONFUSION MATRIX FOR NAIVE BAYES RESULTS

Reference Vs Response Internals Webkit UI
Internals 3212 221 1929
Webkit 597 1478 1070
UI 643 124 4237

TABLE 3: 10-CROSS FOLD RESULTS FOR NAIVE BAYES

Average 77.3%

TABLE 4: EM IN LINGPIPE’ S NAIVE BAYES

Average 63%

TABLE 5: SVM RESULTS

Kernel Function Linear(best)
Accuracy 79.73%

TABLE 6: CONFUSION MATRIX FOR SVM (LINEAR KERNEL)

Reference Vs
Response

UI Internals Webkit

UI 2494 2106 0
Internals 0 5362 0
Webkit 98 374 2672

TABLE 7: RESULTS FOR SVM (LINEAR KERNEL), ONE VS ALL

Case Precision (%) False Positive
Internals Vs All 100 0
Webkit Vs All 85.0 15
UI Vs All 54.2 45.8

Trasha Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3478-3482

www.ijcsit.com 3481

TABLE 8: K-NN RESULTS AT K=10(BEST)

REFERENCES
[1] Sureka, Learning to Classify Bug Reports into Components, 50th

International Conference on Objects, Models, Components, Patterns
(TOOLS Europe), 2012

[2] http://svmlight.joachims.org/
[3] http://en.wikipedia.org/wiki/Naive_Bayes_classifier
[4] http://en.wikipedia.org/wiki/Artificial_neural_network

Accuracy 10-Fold average accuracy

78.5 73.76

No. Of Layers 3
No. Hidden Nodes 10, 20
No. Of nodes for best
results

10

Accuracy 81.1

Trasha Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3478-3482

www.ijcsit.com 3482

